K. Model Diagnostics. residuals ˆɛ ij = Y ij ˆµ i N = Y ij Ȳ i semi-studentized residuals ω ij = ˆɛ ij. studentized deleted residuals ɛ ij =

Size: px
Start display at page:

Download "K. Model Diagnostics. residuals ˆɛ ij = Y ij ˆµ i N = Y ij Ȳ i semi-studentized residuals ω ij = ˆɛ ij. studentized deleted residuals ɛ ij ="

Transcription

1 K. Model Diagnostics We ve already seen how to check model assumptions prior to fitting a one-way ANOVA. Diagnostics carried out after model fitting by using residuals are more informative for assessing model assumptions, because all covariate effects have been removed. residuals ˆɛ ij = Y ij ˆµ i N = Y ij Ȳ i semi-studentized residuals ω ij = ˆɛ ij MSE (standardized) studentized residuals ɛ ij = ˆɛ ij MSE(1 1/ri ) approx N approx N studentized deleted residuals ɛ ij = ˆɛ ij SSE(1 1/r i ) ˆɛ 2 ij N t 1 approx t N t 1 = Y ij Ŷ i( j) Ŷ i( j) fitted mean Ȳ i from a model fit after deleting Y ij. 157

2 SAS code in OUTPUT line S-PLUS or R code Residual of PROC GLM fit = lm(y factor(x)) ˆɛ ij R or RESIDUAL fit$residuals ω ij calculate in a DATA step resids/summary(fit)$sigma ɛ ij STUDENT see code file lmwork.s ɛ ij RSTUDENT see code file lmwork.s Some properties: i j ˆɛ ij = 0 thus the ˆɛ ij are not... Var[ˆɛ ij ] = Var[Y ij Ȳ i ] = σ2 (r i 1) the model is correct. r i σ 2 but Var[ ɛ ij ] = 1 when 158

3 What do we need to check? We will use the studentized residuals ɛ ij for most diagnostics. 159

4 Tools - Plots Plot residuals versus fitted values - look for outliers - look for an even scatter of points above and below the horizontal at zero (indicating homoscedasticity) - if the r i are small, also plot residuals versus fitted values stem-and-leaf or histogram of residuals - look for outliers - look for approximate symmetry around 0 - look for approximate bell shape 160

5 normal probability plot of residuals or normal quantile plot of residuals - look for the residuals to follow the standard normal straight line spread-location plot of residuals versus fitted values - look for an even vertical scatter of points - superimpose the within-group median{ residuals } and look for any trend across groups plot residuals versus observation number, or plot in the order in which the data were collected - look for a random scatter of points - any trend may indicate lack of independence 161

6 plot residuals versus any predictor omitted from the model - look for a random scatter of points around the horizontal at 0, which indicates the predictor is not needed in the model 162

7 Tools - Statistics Outliers - ɛ ij > 3-68% of ˆɛ ij should fall within ( 1,1) - 90% of ˆɛ ij should fall within ( 2,2) Normality - skewness of residuals should be 0 - kurtosis of residuals should be 3 (note that SAS PROC UNIVARIATE gives kurtosis minus 3) 163

8 Tools - Tests Outliers - if max {ɛ ij } > t α/2n,n t 1 then Y ij is an outlier. Why use type I error of α/2n? Normality - reject H 0 : residuals are normally distributed at level α if corr(ˆɛ ij, E[ˆɛ ij ]) < q α from the table for the correlation test for normality. What is E[ˆɛ ij ]? 164

9 Homoscedasticity - Hartley test (Fmax): if the assumptions of independence and normality hold and r i r i then we can test H 0 : σ 2 1 = σ2 2 = = σ2 t versus H A : not all σ 2 i are equal for σ 2 i = Var[Y ij]. Reject H 0 at level α if F max = max(s2 i ) min(s 2 i ) > Fmax α,t,r 1. F max is a distribution derived for this test and can be found in tables. If the r i are close but not all equal, use df= 1 t not r 1. i(r i 1) 165

10 - Modified Levene (Median) test: if the assumption of independence holds and of normality approximately holds, we can test H 0 : σ 2 1 = σ2 2 = = σ2 t versus H A: not all σ 2 i are equal using the data medians: Ỹ i = median j i {Y ij }. 1. Compute z ij = Y ij Ỹ i 2. Fit a oneway ANOVA using the z ij 3. Reject H 0 at level α if F = MST MSE > F α,t 1,N t 166

11 L. Remedial Measures What is the effect of the failure of the one-way ANOVA model assumptions? Moderate lack of normality will lead to only a slight loss of power. Kurtosis has a greater impact on power than skewmess. ˆµ i, Ĉ, and MSE are unbiased with or without normally distributed errors. If r i are not all equal, then a violation of homoscedasticity can affect the power of the F-test. If the r i are approximately equal, then non-constant variance will only have a mild impact on the F-test. 167

12 Violation of the independence assumption is potentially the most serious, especially if the ignored correlation is large (ρ > 0.5). An ignored positive correlation will give variance estimates (e.g., Var[ˆµ i ], ˆ Var[Ĉ]) that are too small, thus null hypotheses may be rejected when they should not be. Outliers usually do not have a big impact since the F-test is fairly robust to skewness. Omitting important covariates can have a large impact on the estimated means and their interpretation, and consequently on the F-test as well. Violation of normality has a larger impact on confidence intervals than on F-tests. 168

13 Remedial measures are methods we use to try to fix the violated assumptions. Outliers - Fit the model once with the outliers, and once without. Compare the two fitted models (ˆµ i, F-test, contrasts of interest). If they are not substantially different in terms of scientific conclusions, then leave the outliers in. - Always check to make sure outliers are not just the result of a data entry error, equipment malfunction, or miscalculation. If they are, then the outliers should be corrected or omitted. - If the two models give substantially different conclusions, then both sets of results should be reported, or an alternative analysis technique should be used. 169

14 Omitted covariates - If an omitted covariate appears to be important from a residual plot, then add it to the model and test it for statistical significance. - If you know an important covariate was omitted, but it was not collected, or you do not have access to it, there will be problems with model interpretation. Independence - If you know the source of the correlation, then you can fit a random effects model to adjust for it. - If you do not, then move to working independence estimates of a robust sandwich estimator in generalized estimating equations. 170

15 Normality is satisfied but homoscedasticity is not. Suppose the violation is such that ɛ ij iid N(0, σ 2 i ). Since the σi 2 are unknown, they will need to estimated using s 2 i = r 1 r i i 1 j=1 (Y ij Ȳ i ) 2. Having non-constant variance means that ˆµ i = Ȳ i no longer have minimum variance among all unbiased linear estimators. We must adjust for the groups with larger variances. How do we do that? 171

16 Instead of minimizing least squares i j(y ij µ i ) 2, we will minimize weighted least squares i j w ij (Y ij µ i ) 2, where w ij = We still get ˆµ i = Ȳ i, but our sums of squares will now be weighted as well. least squares SST = i r i (Ȳ i Ȳ ) 2 SSE = i j(y ij Ȳ i ) 2 weighted least squares SST = i r i(ȳ i Ȳ ) 2 SSE = i s 2 i j 1 s 2 i (Y ij Ȳ i ) 2 172

17 Now F = MSE MST will only have an approximate F distribution. Larger r i better approximation. Coding: SAS - WEIGHT statement in PROC GLM S-PLUS & R - lm(, weights = ) If you saw weighted least squares in regression, this is the same thing. We just need to write the ANOVA model in the regression parameterization, and use ˆβ = 173

18 Neither normality nor homoscedasticity are satisfied. (1) Transform the data, the Y ij values. Watch out for negative and 0 values, which affect how transformations can be done. (a) If σ 2 i = cµ i then try Y ij. Plot s 2 i versus Ȳ i and look for an increasing or decreasing linear trend. Or compute s 2 i /Ȳ i and look for them to take on a similar value i. (b) If σ i = cµ i then try log(y ij + k) for some small k. Plot s i versus Ȳ i or compute s i /Ȳ i as above. (c) If σ i = cµ 2 i then try 1 Y ij +k for some small k. Plot s i versus Ȳi 2 or compute s i /(Ȳ i ) 2 as above. 174

19 (d) If Y ij is a proportion then try log(y ij ) log(1 Y ij ), i.e., log odds. If the proportions come from differently sized samples, then also try weighted least squares. (e) If none of the above work, then try the Box - Cox procedure for finding an appropriate power transformation try a non-linear mdoel, e.g. generalized linear model or non-parametric regression. What are the diasadvantages of fitting models on a transformed outcome? 175

Topic 23: Diagnostics and Remedies

Topic 23: Diagnostics and Remedies Topic 23: Diagnostics and Remedies Outline Diagnostics residual checks ANOVA remedial measures Diagnostics Overview We will take the diagnostics and remedial measures that we learned for regression and

More information

Applied Regression. Applied Regression. Chapter 2 Simple Linear Regression. Hongcheng Li. April, 6, 2013

Applied Regression. Applied Regression. Chapter 2 Simple Linear Regression. Hongcheng Li. April, 6, 2013 Applied Regression Chapter 2 Simple Linear Regression Hongcheng Li April, 6, 2013 Outline 1 Introduction of simple linear regression 2 Scatter plot 3 Simple linear regression model 4 Test of Hypothesis

More information

Lectures on Simple Linear Regression Stat 431, Summer 2012

Lectures on Simple Linear Regression Stat 431, Summer 2012 Lectures on Simple Linear Regression Stat 43, Summer 0 Hyunseung Kang July 6-8, 0 Last Updated: July 8, 0 :59PM Introduction Previously, we have been investigating various properties of the population

More information

Linear models and their mathematical foundations: Simple linear regression

Linear models and their mathematical foundations: Simple linear regression Linear models and their mathematical foundations: Simple linear regression Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/21 Introduction

More information

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X.

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X. Estimating σ 2 We can do simple prediction of Y and estimation of the mean of Y at any value of X. To perform inferences about our regression line, we must estimate σ 2, the variance of the error term.

More information

22s:152 Applied Linear Regression. Take random samples from each of m populations.

22s:152 Applied Linear Regression. Take random samples from each of m populations. 22s:152 Applied Linear Regression Chapter 8: ANOVA NOTE: We will meet in the lab on Monday October 10. One-way ANOVA Focuses on testing for differences among group means. Take random samples from each

More information

Formal Statement of Simple Linear Regression Model

Formal Statement of Simple Linear Regression Model Formal Statement of Simple Linear Regression Model Y i = β 0 + β 1 X i + ɛ i Y i value of the response variable in the i th trial β 0 and β 1 are parameters X i is a known constant, the value of the predictor

More information

Basic Business Statistics 6 th Edition

Basic Business Statistics 6 th Edition Basic Business Statistics 6 th Edition Chapter 12 Simple Linear Regression Learning Objectives In this chapter, you learn: How to use regression analysis to predict the value of a dependent variable based

More information

Confidence Intervals, Testing and ANOVA Summary

Confidence Intervals, Testing and ANOVA Summary Confidence Intervals, Testing and ANOVA Summary 1 One Sample Tests 1.1 One Sample z test: Mean (σ known) Let X 1,, X n a r.s. from N(µ, σ) or n > 30. Let The test statistic is H 0 : µ = µ 0. z = x µ 0

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

One-way ANOVA Model Assumptions

One-way ANOVA Model Assumptions One-way ANOVA Model Assumptions STAT:5201 Week 4: Lecture 1 1 / 31 One-way ANOVA: Model Assumptions Consider the single factor model: Y ij = µ + α }{{} i ij iid with ɛ ij N(0, σ 2 ) mean structure random

More information

STAT5044: Regression and Anova

STAT5044: Regression and Anova STAT5044: Regression and Anova Inyoung Kim 1 / 49 Outline 1 How to check assumptions 2 / 49 Assumption Linearity: scatter plot, residual plot Randomness: Run test, Durbin-Watson test when the data can

More information

Matrices and vectors A matrix is a rectangular array of numbers. Here s an example: A =

Matrices and vectors A matrix is a rectangular array of numbers. Here s an example: A = Matrices and vectors A matrix is a rectangular array of numbers Here s an example: 23 14 17 A = 225 0 2 This matrix has dimensions 2 3 The number of rows is first, then the number of columns We can write

More information

Statistics for Managers using Microsoft Excel 6 th Edition

Statistics for Managers using Microsoft Excel 6 th Edition Statistics for Managers using Microsoft Excel 6 th Edition Chapter 13 Simple Linear Regression 13-1 Learning Objectives In this chapter, you learn: How to use regression analysis to predict the value of

More information

22s:152 Applied Linear Regression. There are a couple commonly used models for a one-way ANOVA with m groups. Chapter 8: ANOVA

22s:152 Applied Linear Regression. There are a couple commonly used models for a one-way ANOVA with m groups. Chapter 8: ANOVA 22s:152 Applied Linear Regression Chapter 8: ANOVA NOTE: We will meet in the lab on Monday October 10. One-way ANOVA Focuses on testing for differences among group means. Take random samples from each

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Simple linear regression tries to fit a simple line between two variables Y and X. If X is linearly related to Y this explains some of the variability in Y. In most cases, there

More information

1-Way ANOVA MATH 143. Spring Department of Mathematics and Statistics Calvin College

1-Way ANOVA MATH 143. Spring Department of Mathematics and Statistics Calvin College 1-Way ANOVA MATH 143 Department of Mathematics and Statistics Calvin College Spring 2010 The basic ANOVA situation Two variables: 1 Categorical, 1 Quantitative Main Question: Do the (means of) the quantitative

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression In simple linear regression we are concerned about the relationship between two variables, X and Y. There are two components to such a relationship. 1. The strength of the relationship.

More information

Chapter 14. Linear least squares

Chapter 14. Linear least squares Serik Sagitov, Chalmers and GU, March 5, 2018 Chapter 14 Linear least squares 1 Simple linear regression model A linear model for the random response Y = Y (x) to an independent variable X = x For a given

More information

Summary of Chapter 7 (Sections ) and Chapter 8 (Section 8.1)

Summary of Chapter 7 (Sections ) and Chapter 8 (Section 8.1) Summary of Chapter 7 (Sections 7.2-7.5) and Chapter 8 (Section 8.1) Chapter 7. Tests of Statistical Hypotheses 7.2. Tests about One Mean (1) Test about One Mean Case 1: σ is known. Assume that X N(µ, σ

More information

401 Review. 6. Power analysis for one/two-sample hypothesis tests and for correlation analysis.

401 Review. 6. Power analysis for one/two-sample hypothesis tests and for correlation analysis. 401 Review Major topics of the course 1. Univariate analysis 2. Bivariate analysis 3. Simple linear regression 4. Linear algebra 5. Multiple regression analysis Major analysis methods 1. Graphical analysis

More information

Inference for the Regression Coefficient

Inference for the Regression Coefficient Inference for the Regression Coefficient Recall, b 0 and b 1 are the estimates of the slope β 1 and intercept β 0 of population regression line. We can shows that b 0 and b 1 are the unbiased estimates

More information

STATISTICS 479 Exam II (100 points)

STATISTICS 479 Exam II (100 points) Name STATISTICS 79 Exam II (1 points) 1. A SAS data set was created using the following input statement: Answer parts(a) to (e) below. input State $ City $ Pop199 Income Housing Electric; (a) () Give the

More information

Applied Econometrics (QEM)

Applied Econometrics (QEM) Applied Econometrics (QEM) based on Prinicples of Econometrics Jakub Mućk Department of Quantitative Economics Jakub Mućk Applied Econometrics (QEM) Meeting #3 1 / 42 Outline 1 2 3 t-test P-value Linear

More information

Correlation Analysis

Correlation Analysis Simple Regression Correlation Analysis Correlation analysis is used to measure strength of the association (linear relationship) between two variables Correlation is only concerned with strength of the

More information

4.1. Introduction: Comparing Means

4.1. Introduction: Comparing Means 4. Analysis of Variance (ANOVA) 4.1. Introduction: Comparing Means Consider the problem of testing H 0 : µ 1 = µ 2 against H 1 : µ 1 µ 2 in two independent samples of two different populations of possibly

More information

Applied Regression Modeling: A Business Approach Chapter 3: Multiple Linear Regression Sections

Applied Regression Modeling: A Business Approach Chapter 3: Multiple Linear Regression Sections Applied Regression Modeling: A Business Approach Chapter 3: Multiple Linear Regression Sections 3.4 3.6 by Iain Pardoe 3.4 Model assumptions 2 Regression model assumptions.............................................

More information

Analysing data: regression and correlation S6 and S7

Analysing data: regression and correlation S6 and S7 Basic medical statistics for clinical and experimental research Analysing data: regression and correlation S6 and S7 K. Jozwiak k.jozwiak@nki.nl 2 / 49 Correlation So far we have looked at the association

More information

Regression. Marc H. Mehlman University of New Haven

Regression. Marc H. Mehlman University of New Haven Regression Marc H. Mehlman marcmehlman@yahoo.com University of New Haven the statistician knows that in nature there never was a normal distribution, there never was a straight line, yet with normal and

More information

Scatter plot of data from the study. Linear Regression

Scatter plot of data from the study. Linear Regression 1 2 Linear Regression Scatter plot of data from the study. Consider a study to relate birthweight to the estriol level of pregnant women. The data is below. i Weight (g / 100) i Weight (g / 100) 1 7 25

More information

Inferences for Regression

Inferences for Regression Inferences for Regression An Example: Body Fat and Waist Size Looking at the relationship between % body fat and waist size (in inches). Here is a scatterplot of our data set: Remembering Regression In

More information

Chapter 3. Diagnostics and Remedial Measures

Chapter 3. Diagnostics and Remedial Measures Chapter 3. Diagnostics and Remedial Measures So far, we took data (X i, Y i ) and we assumed Y i = β 0 + β 1 X i + ǫ i i = 1, 2,..., n, where ǫ i iid N(0, σ 2 ), β 0, β 1 and σ 2 are unknown parameters,

More information

Lecture 11: Simple Linear Regression

Lecture 11: Simple Linear Regression Lecture 11: Simple Linear Regression Readings: Sections 3.1-3.3, 11.1-11.3 Apr 17, 2009 In linear regression, we examine the association between two quantitative variables. Number of beers that you drink

More information

Inference for Regression

Inference for Regression Inference for Regression Section 9.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 13b - 3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

ANOVA Situation The F Statistic Multiple Comparisons. 1-Way ANOVA MATH 143. Department of Mathematics and Statistics Calvin College

ANOVA Situation The F Statistic Multiple Comparisons. 1-Way ANOVA MATH 143. Department of Mathematics and Statistics Calvin College 1-Way ANOVA MATH 143 Department of Mathematics and Statistics Calvin College An example ANOVA situation Example (Treating Blisters) Subjects: 25 patients with blisters Treatments: Treatment A, Treatment

More information

Diagnostics and Remedial Measures

Diagnostics and Remedial Measures Diagnostics and Remedial Measures Yang Feng http://www.stat.columbia.edu/~yangfeng Yang Feng (Columbia University) Diagnostics and Remedial Measures 1 / 72 Remedial Measures How do we know that the regression

More information

The factors in higher-way ANOVAs can again be considered fixed or random, depending on the context of the study. For each factor:

The factors in higher-way ANOVAs can again be considered fixed or random, depending on the context of the study. For each factor: M. Two-way Random Effects ANOVA The factors in higher-way ANOVAs can again be considered fixed or random, depending on the context of the study. For each factor: Are the levels of that factor of direct

More information

Measuring the fit of the model - SSR

Measuring the fit of the model - SSR Measuring the fit of the model - SSR Once we ve determined our estimated regression line, we d like to know how well the model fits. How far/close are the observations to the fitted line? One way to do

More information

Diagnostics and Remedial Measures: An Overview

Diagnostics and Remedial Measures: An Overview Diagnostics and Remedial Measures: An Overview Residuals Model diagnostics Graphical techniques Hypothesis testing Remedial measures Transformation Later: more about all this for multiple regression W.

More information

Remedial Measures, Brown-Forsythe test, F test

Remedial Measures, Brown-Forsythe test, F test Remedial Measures, Brown-Forsythe test, F test Dr. Frank Wood Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 7, Slide 1 Remedial Measures How do we know that the regression function

More information

Outline. Topic 20 - Diagnostics and Remedies. Residuals. Overview. Diagnostics Plots Residual checks Formal Tests. STAT Fall 2013

Outline. Topic 20 - Diagnostics and Remedies. Residuals. Overview. Diagnostics Plots Residual checks Formal Tests. STAT Fall 2013 Topic 20 - Diagnostics and Remedies - Fall 2013 Diagnostics Plots Residual checks Formal Tests Remedial Measures Outline Topic 20 2 General assumptions Overview Normally distributed error terms Independent

More information

Tentative solutions TMA4255 Applied Statistics 16 May, 2015

Tentative solutions TMA4255 Applied Statistics 16 May, 2015 Norwegian University of Science and Technology Department of Mathematical Sciences Page of 9 Tentative solutions TMA455 Applied Statistics 6 May, 05 Problem Manufacturer of fertilizers a) Are these independent

More information

Inference for Regression Inference about the Regression Model and Using the Regression Line

Inference for Regression Inference about the Regression Model and Using the Regression Line Inference for Regression Inference about the Regression Model and Using the Regression Line PBS Chapter 10.1 and 10.2 2009 W.H. Freeman and Company Objectives (PBS Chapter 10.1 and 10.2) Inference about

More information

R 2 and F -Tests and ANOVA

R 2 and F -Tests and ANOVA R 2 and F -Tests and ANOVA December 6, 2018 1 Partition of Sums of Squares The distance from any point y i in a collection of data, to the mean of the data ȳ, is the deviation, written as y i ȳ. Definition.

More information

Residual Analysis for two-way ANOVA The twoway model with K replicates, including interaction,

Residual Analysis for two-way ANOVA The twoway model with K replicates, including interaction, Residual Analysis for two-way ANOVA The twoway model with K replicates, including interaction, is Y ijk = µ ij + ɛ ijk = µ + α i + β j + γ ij + ɛ ijk with i = 1,..., I, j = 1,..., J, k = 1,..., K. In carrying

More information

MAT2377. Rafa l Kulik. Version 2015/November/26. Rafa l Kulik

MAT2377. Rafa l Kulik. Version 2015/November/26. Rafa l Kulik MAT2377 Rafa l Kulik Version 2015/November/26 Rafa l Kulik Bivariate data and scatterplot Data: Hydrocarbon level (x) and Oxygen level (y): x: 0.99, 1.02, 1.15, 1.29, 1.46, 1.36, 0.87, 1.23, 1.55, 1.40,

More information

3rd Quartile. 1st Quartile) Minimum

3rd Quartile. 1st Quartile) Minimum EXST7034 - Regression Techniques Page 1 Regression diagnostics dependent variable Y3 There are a number of graphic representations which will help with problem detection and which can be used to obtain

More information

Review of Statistics 101

Review of Statistics 101 Review of Statistics 101 We review some important themes from the course 1. Introduction Statistics- Set of methods for collecting/analyzing data (the art and science of learning from data). Provides methods

More information

Scatter plot of data from the study. Linear Regression

Scatter plot of data from the study. Linear Regression 1 2 Linear Regression Scatter plot of data from the study. Consider a study to relate birthweight to the estriol level of pregnant women. The data is below. i Weight (g / 100) i Weight (g / 100) 1 7 25

More information

Contents. 1 Review of Residuals. 2 Detecting Outliers. 3 Influential Observations. 4 Multicollinearity and its Effects

Contents. 1 Review of Residuals. 2 Detecting Outliers. 3 Influential Observations. 4 Multicollinearity and its Effects Contents 1 Review of Residuals 2 Detecting Outliers 3 Influential Observations 4 Multicollinearity and its Effects W. Zhou (Colorado State University) STAT 540 July 6th, 2015 1 / 32 Model Diagnostics:

More information

MLR Model Checking. Author: Nicholas G Reich, Jeff Goldsmith. This material is part of the statsteachr project

MLR Model Checking. Author: Nicholas G Reich, Jeff Goldsmith. This material is part of the statsteachr project MLR Model Checking Author: Nicholas G Reich, Jeff Goldsmith This material is part of the statsteachr project Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en

More information

Simple Linear Regression. (Chs 12.1, 12.2, 12.4, 12.5)

Simple Linear Regression. (Chs 12.1, 12.2, 12.4, 12.5) 10 Simple Linear Regression (Chs 12.1, 12.2, 12.4, 12.5) Simple Linear Regression Rating 20 40 60 80 0 5 10 15 Sugar 2 Simple Linear Regression Rating 20 40 60 80 0 5 10 15 Sugar 3 Simple Linear Regression

More information

Density Temp vs Ratio. temp

Density Temp vs Ratio. temp Temp Ratio Density 0.00 0.02 0.04 0.06 0.08 0.10 0.12 Density 0.0 0.2 0.4 0.6 0.8 1.0 1. (a) 170 175 180 185 temp 1.0 1.5 2.0 2.5 3.0 ratio The histogram shows that the temperature measures have two peaks,

More information

Lecture 9: Linear Regression

Lecture 9: Linear Regression Lecture 9: Linear Regression Goals Develop basic concepts of linear regression from a probabilistic framework Estimating parameters and hypothesis testing with linear models Linear regression in R Regression

More information

STAT2012 Statistical Tests 23 Regression analysis: method of least squares

STAT2012 Statistical Tests 23 Regression analysis: method of least squares 23 Regression analysis: method of least squares L23 Regression analysis The main purpose of regression is to explore the dependence of one variable (Y ) on another variable (X). 23.1 Introduction (P.532-555)

More information

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #6

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #6 STA 8 Applied Linear Models: Regression Analysis Spring 011 Solution for Homework #6 6. a) = 11 1 31 41 51 1 3 4 5 11 1 31 41 51 β = β1 β β 3 b) = 1 1 1 1 1 11 1 31 41 51 1 3 4 5 β = β 0 β1 β 6.15 a) Stem-and-leaf

More information

Lecture 2. The Simple Linear Regression Model: Matrix Approach

Lecture 2. The Simple Linear Regression Model: Matrix Approach Lecture 2 The Simple Linear Regression Model: Matrix Approach Matrix algebra Matrix representation of simple linear regression model 1 Vectors and Matrices Where it is necessary to consider a distribution

More information

Simple Linear Regression. Material from Devore s book (Ed 8), and Cengagebrain.com

Simple Linear Regression. Material from Devore s book (Ed 8), and Cengagebrain.com 12 Simple Linear Regression Material from Devore s book (Ed 8), and Cengagebrain.com The Simple Linear Regression Model The simplest deterministic mathematical relationship between two variables x and

More information

What is a Hypothesis?

What is a Hypothesis? What is a Hypothesis? A hypothesis is a claim (assumption) about a population parameter: population mean Example: The mean monthly cell phone bill in this city is μ = $42 population proportion Example:

More information

STAT 3A03 Applied Regression With SAS Fall 2017

STAT 3A03 Applied Regression With SAS Fall 2017 STAT 3A03 Applied Regression With SAS Fall 2017 Assignment 2 Solution Set Q. 1 I will add subscripts relating to the question part to the parameters and their estimates as well as the errors and residuals.

More information

Applied Regression Analysis

Applied Regression Analysis Applied Regression Analysis Chapter 3 Multiple Linear Regression Hongcheng Li April, 6, 2013 Recall simple linear regression 1 Recall simple linear regression 2 Parameter Estimation 3 Interpretations of

More information

Stat 135, Fall 2006 A. Adhikari HOMEWORK 10 SOLUTIONS

Stat 135, Fall 2006 A. Adhikari HOMEWORK 10 SOLUTIONS Stat 135, Fall 2006 A. Adhikari HOMEWORK 10 SOLUTIONS 1a) The model is cw i = β 0 + β 1 el i + ɛ i, where cw i is the weight of the ith chick, el i the length of the egg from which it hatched, and ɛ i

More information

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages:

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages: Glossary The ISI glossary of statistical terms provides definitions in a number of different languages: http://isi.cbs.nl/glossary/index.htm Adjusted r 2 Adjusted R squared measures the proportion of the

More information

Simple Linear Regression Using Ordinary Least Squares

Simple Linear Regression Using Ordinary Least Squares Simple Linear Regression Using Ordinary Least Squares Purpose: To approximate a linear relationship with a line. Reason: We want to be able to predict Y using X. Definition: The Least Squares Regression

More information

Assessing Model Adequacy

Assessing Model Adequacy Assessing Model Adequacy A number of assumptions were made about the model, and these need to be verified in order to use the model for inferences. In cases where some assumptions are violated, there are

More information

Linear Regression Model. Badr Missaoui

Linear Regression Model. Badr Missaoui Linear Regression Model Badr Missaoui Introduction What is this course about? It is a course on applied statistics. It comprises 2 hours lectures each week and 1 hour lab sessions/tutorials. We will focus

More information

Chapter 4: Regression Models

Chapter 4: Regression Models Sales volume of company 1 Textbook: pp. 129-164 Chapter 4: Regression Models Money spent on advertising 2 Learning Objectives After completing this chapter, students will be able to: Identify variables,

More information

Inference for Regression Simple Linear Regression

Inference for Regression Simple Linear Regression Inference for Regression Simple Linear Regression IPS Chapter 10.1 2009 W.H. Freeman and Company Objectives (IPS Chapter 10.1) Simple linear regression p Statistical model for linear regression p Estimating

More information

Unit 10: Simple Linear Regression and Correlation

Unit 10: Simple Linear Regression and Correlation Unit 10: Simple Linear Regression and Correlation Statistics 571: Statistical Methods Ramón V. León 6/28/2004 Unit 10 - Stat 571 - Ramón V. León 1 Introductory Remarks Regression analysis is a method for

More information

Mathematics for Economics MA course

Mathematics for Economics MA course Mathematics for Economics MA course Simple Linear Regression Dr. Seetha Bandara Simple Regression Simple linear regression is a statistical method that allows us to summarize and study relationships between

More information

STAT 3A03 Applied Regression Analysis With SAS Fall 2017

STAT 3A03 Applied Regression Analysis With SAS Fall 2017 STAT 3A03 Applied Regression Analysis With SAS Fall 2017 Assignment 5 Solution Set Q. 1 a The code that I used and the output is as follows PROC GLM DataS3A3.Wool plotsnone; Class Amp Len Load; Model CyclesAmp

More information

Notes 6. Basic Stats Procedures part II

Notes 6. Basic Stats Procedures part II Statistics 5106, Fall 2007 Notes 6 Basic Stats Procedures part II Testing for Correlation between Two Variables You have probably all heard about correlation. When two variables are correlated, they are

More information

Stat 427/527: Advanced Data Analysis I

Stat 427/527: Advanced Data Analysis I Stat 427/527: Advanced Data Analysis I Review of Chapters 1-4 Sep, 2017 1 / 18 Concepts you need to know/interpret Numerical summaries: measures of center (mean, median, mode) measures of spread (sample

More information

ANOVA (Analysis of Variance) output RLS 11/20/2016

ANOVA (Analysis of Variance) output RLS 11/20/2016 ANOVA (Analysis of Variance) output RLS 11/20/2016 1. Analysis of Variance (ANOVA) The goal of ANOVA is to see if the variation in the data can explain enough to see if there are differences in the means.

More information

Homework 2: Simple Linear Regression

Homework 2: Simple Linear Regression STAT 4385 Applied Regression Analysis Homework : Simple Linear Regression (Simple Linear Regression) Thirty (n = 30) College graduates who have recently entered the job market. For each student, the CGPA

More information

Correlation and Regression

Correlation and Regression Correlation and Regression October 25, 2017 STAT 151 Class 9 Slide 1 Outline of Topics 1 Associations 2 Scatter plot 3 Correlation 4 Regression 5 Testing and estimation 6 Goodness-of-fit STAT 151 Class

More information

Review of Statistics

Review of Statistics Review of Statistics Topics Descriptive Statistics Mean, Variance Probability Union event, joint event Random Variables Discrete and Continuous Distributions, Moments Two Random Variables Covariance and

More information

The Simple Linear Regression Model

The Simple Linear Regression Model The Simple Linear Regression Model Lesson 3 Ryan Safner 1 1 Department of Economics Hood College ECON 480 - Econometrics Fall 2017 Ryan Safner (Hood College) ECON 480 - Lesson 3 Fall 2017 1 / 77 Bivariate

More information

Multicollinearity occurs when two or more predictors in the model are correlated and provide redundant information about the response.

Multicollinearity occurs when two or more predictors in the model are correlated and provide redundant information about the response. Multicollinearity Read Section 7.5 in textbook. Multicollinearity occurs when two or more predictors in the model are correlated and provide redundant information about the response. Example of multicollinear

More information

Single and multiple linear regression analysis

Single and multiple linear regression analysis Single and multiple linear regression analysis Marike Cockeran 2017 Introduction Outline of the session Simple linear regression analysis SPSS example of simple linear regression analysis Additional topics

More information

More about Single Factor Experiments

More about Single Factor Experiments More about Single Factor Experiments 1 2 3 0 / 23 1 2 3 1 / 23 Parameter estimation Effect Model (1): Y ij = µ + A i + ɛ ij, Ji A i = 0 Estimation: µ + A i = y i. ˆµ = y..  i = y i. y.. Effect Modell

More information

Answer Keys to Homework#10

Answer Keys to Homework#10 Answer Keys to Homework#10 Problem 1 Use either restricted or unrestricted mixed models. Problem 2 (a) First, the respective means for the 8 level combinations are listed in the following table A B C Mean

More information

Statistics 512: Solution to Homework#11. Problems 1-3 refer to the soybean sausage dataset of Problem 20.8 (ch21pr08.dat).

Statistics 512: Solution to Homework#11. Problems 1-3 refer to the soybean sausage dataset of Problem 20.8 (ch21pr08.dat). Statistics 512: Solution to Homework#11 Problems 1-3 refer to the soybean sausage dataset of Problem 20.8 (ch21pr08.dat). 1. Perform the two-way ANOVA without interaction for this model. Use the results

More information

Assignment 9 Answer Keys

Assignment 9 Answer Keys Assignment 9 Answer Keys Problem 1 (a) First, the respective means for the 8 level combinations are listed in the following table A B C Mean 26.00 + 34.67 + 39.67 + + 49.33 + 42.33 + + 37.67 + + 54.67

More information

Correlation and the Analysis of Variance Approach to Simple Linear Regression

Correlation and the Analysis of Variance Approach to Simple Linear Regression Correlation and the Analysis of Variance Approach to Simple Linear Regression Biometry 755 Spring 2009 Correlation and the Analysis of Variance Approach to Simple Linear Regression p. 1/35 Correlation

More information

Lecture 1: Linear Models and Applications

Lecture 1: Linear Models and Applications Lecture 1: Linear Models and Applications Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Introduction to linear models Exploratory data analysis (EDA) Estimation

More information

Chapter 16. Simple Linear Regression and Correlation

Chapter 16. Simple Linear Regression and Correlation Chapter 16 Simple Linear Regression and Correlation 16.1 Regression Analysis Our problem objective is to analyze the relationship between interval variables; regression analysis is the first tool we will

More information

STAT 705 Chapter 16: One-way ANOVA

STAT 705 Chapter 16: One-way ANOVA STAT 705 Chapter 16: One-way ANOVA Timothy Hanson Department of Statistics, University of South Carolina Stat 705: Data Analysis II 1 / 21 What is ANOVA? Analysis of variance (ANOVA) models are regression

More information

Ch 3: Multiple Linear Regression

Ch 3: Multiple Linear Regression Ch 3: Multiple Linear Regression 1. Multiple Linear Regression Model Multiple regression model has more than one regressor. For example, we have one response variable and two regressor variables: 1. delivery

More information

ST505/S697R: Fall Homework 2 Solution.

ST505/S697R: Fall Homework 2 Solution. ST505/S69R: Fall 2012. Homework 2 Solution. 1. 1a; problem 1.22 Below is the summary information (edited) from the regression (using R output); code at end of solution as is code and output for SAS. a)

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 430/514 Recall: A regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates)

More information

Chapter 16. Simple Linear Regression and dcorrelation

Chapter 16. Simple Linear Regression and dcorrelation Chapter 16 Simple Linear Regression and dcorrelation 16.1 Regression Analysis Our problem objective is to analyze the relationship between interval variables; regression analysis is the first tool we will

More information

Statistics for exp. medical researchers Regression and Correlation

Statistics for exp. medical researchers Regression and Correlation Faculty of Health Sciences Regression analysis Statistics for exp. medical researchers Regression and Correlation Lene Theil Skovgaard Sept. 28, 2015 Linear regression, Estimation and Testing Confidence

More information

Nonparametric Statistics. Leah Wright, Tyler Ross, Taylor Brown

Nonparametric Statistics. Leah Wright, Tyler Ross, Taylor Brown Nonparametric Statistics Leah Wright, Tyler Ross, Taylor Brown Before we get to nonparametric statistics, what are parametric statistics? These statistics estimate and test population means, while holding

More information

Statistics - Lecture Three. Linear Models. Charlotte Wickham 1.

Statistics - Lecture Three. Linear Models. Charlotte Wickham   1. Statistics - Lecture Three Charlotte Wickham wickham@stat.berkeley.edu http://www.stat.berkeley.edu/~wickham/ Linear Models 1. The Theory 2. Practical Use 3. How to do it in R 4. An example 5. Extensions

More information

STATISTICS 174: APPLIED STATISTICS FINAL EXAM DECEMBER 10, 2002

STATISTICS 174: APPLIED STATISTICS FINAL EXAM DECEMBER 10, 2002 Time allowed: 3 HOURS. STATISTICS 174: APPLIED STATISTICS FINAL EXAM DECEMBER 10, 2002 This is an open book exam: all course notes and the text are allowed, and you are expected to use your own calculator.

More information

Math 3330: Solution to midterm Exam

Math 3330: Solution to midterm Exam Math 3330: Solution to midterm Exam Question 1: (14 marks) Suppose the regression model is y i = β 0 + β 1 x i + ε i, i = 1,, n, where ε i are iid Normal distribution N(0, σ 2 ). a. (2 marks) Compute the

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/~eariasca/teaching.html 1 / 42 Passenger car mileage Consider the carmpg dataset taken from

More information

Multiple Regression. Inference for Multiple Regression and A Case Study. IPS Chapters 11.1 and W.H. Freeman and Company

Multiple Regression. Inference for Multiple Regression and A Case Study. IPS Chapters 11.1 and W.H. Freeman and Company Multiple Regression Inference for Multiple Regression and A Case Study IPS Chapters 11.1 and 11.2 2009 W.H. Freeman and Company Objectives (IPS Chapters 11.1 and 11.2) Multiple regression Data for multiple

More information

Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is

Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is Q = (Y i β 0 β 1 X i1 β 2 X i2 β p 1 X i.p 1 ) 2, which in matrix notation is Q = (Y Xβ) (Y

More information